سفارش تبلیغ
صبا ویژن

پروژه دانشجویی مقاله تولید برق بدون مصرف سوخت فایل ورد (word)

 

برای دریافت پروژه اینجا کلیک کنید

 پروژه دانشجویی مقاله تولید برق بدون مصرف سوخت فایل ورد (word) دارای 107 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد پروژه دانشجویی مقاله تولید برق بدون مصرف سوخت فایل ورد (word)   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

 

بخشی از فهرست مطالب پروژه پروژه دانشجویی مقاله تولید برق بدون مصرف سوخت فایل ورد (word)

  فصل اول: انرژی بیوماس
1_1 مقدمه6
2_1 منابع بیوماس 8
3_1  محصولات انرژی زا8
1_3_1 ضایعات شهری وصنعتی 8
2_3_1  ضایعات جامد شهری 9
3_3_1  ضایعات مایع10
4_3_1  فضولات دامی 10
4_1  تکنولوژیهای تبدیل انرژی بیوماس 10
5_1  فرآیند های احتراق مستقیم 11
6_1  سیستمهای احتراق زیست توده سوز با کوره های بستر ثابت12
7_1   کوره های احتراق بستر سیال ( FBC )   14
8_1  فرآیند های ترمو شیمیایی 15
1_8_1  تولید سوختهای جامد     17
2_8_1  تولید سوختهای مایع17
3_8_1  انواع راکتورهای گازی کننده براساس نوع راکتور 20
1_3_8_1  راکتور بستر ثابت  20
2_3_8_1 راکتور بستر سیال21
9_ 1  فرآیندهای بیوشیمیایی 22
1_9_1 تخمیر بی هوازی برای تولید بیوگاز22
2_9_1  تولید بیوگاز از فضولات دامی و پسمانهای کشاورزی 27
3_9_1 تولید بیوگاز از زباله های شهری 30
4_9_1 تخمیر اتانول  32
10_1 مقایسه نقاط قوت و ضعف فن آوری تبدیل انرژی35
11_1 مقایسه سازگاری فن آوریها با انواع مختلف منابع زیست توده36
12_1 تبدیل بیوماس به الکتریسیته 37
1_12_1 نیروگاههای با موتورهای احتراقی 38
2_12_1  نیروگاههای بیوماس بخاری 39
3_12_1  نیروگاههای بیوماس توربین گازی 41
4_12_1 نیروگاههای بیوماس سیکل ترکیبی 41
13_1  بررسی بیوماس از دیدگاه اقتصادی 42
14_1 بررسی زیست محیطی منابع بیوماس 43
      فصل دوم:   انرژی جزر ومد
1_2  انواع نیروگاههای جزرومدی 44
2_2 نیروگاههای جزرومدی دارای مخزن 45
3_2 انواع نیروگاههای جزر و مدی دارای مخزن 46
1_3_2  یک مخزن برای جزر : 46
2_3_2یک مخزن برای مد : 48
3_3_2 یک مخزن دو طرفه : 48
4_3_2  دو مخزن یکی برای جزر و دیگری برای مد : 49
5_3_2 دو مخزن یکی بلند و دیگری کوتاه با سیستم یک طرفه : 49
4_2  مشخصات نیروگاه جزر و مدی دارای مخزن لارانس 50
5_2 نیروگاههای جریان جزر و مدی 52
1_5_2  مشخصات طرح نیروگاه جریان جزر و مدی تنگه مسینا 53
6_2  بررسی ایجاد نیروگاههای جزر ومدی در ایران 53
7_2 بررسی اقتصادی نیروگاههای جزر و مدی 55
8_2 بررسی زیست محیطی نیروگاههای جزر و مدی 56
9_2 نیروگاههای جریان دریایی57
 1_9_2 شرایط لازم برای ایجاد تأسیسات جریان دریایی 60
2_9_2 تکنولوژیهای تولید برق از انرژی جریانهای دریایی 60
10_2  بررسی اقتصادی نیروگاههای جریان دریایی  63
11_2 بررسی زیست محیطی نیروگاههای جریان دریایی 63

  فصل سوم : انرژی زمین گرمایی
1_3 مقدمه65
2_3 منبع حرارتی و مناطق مهم زمین گرمایی جهان و ایران66
 3_3 انواع منابع زمین گرمایی 70
1_3_3 منابع هیدروترمال71
 2_3_3 منابع لایه های تحت فشار   72
3_3_3 تخته سنگهای خشک و داغ 74
4_3_3 توده های مذاب 78
4-3 موارد کاربرد انرژی زمین گرمایی 78
5_3 کاربردهای مستقیم انرژی زمین گرمایی 79
6_3 موارد کاربرد 80
1_6_3 استفاده های گرمایشی : 80
2_6_3 کاربردهای کشاورزی : 82
3_6_3  کاربردهای صنعتی : 84
7_3  پمپ حرارتی زمین گرمایی : 84
8_3 بررسی اقتصادی کاربرد مستقیم انرژی زمین گرمایی 85
9_3 استفاده مستقیم از انرژی زمین گرمایی در ایران87
10_3 استفاده از انرژی زمین گرمایی برای تولید نیروی برق 89
11_3 انواع نیروگاههای زمین گرمایی 90
1_11_3 نیروگاههای بخار خشک90
2_11_3 نیروگاههای بخار انبساط آنی 92
3_11_3 نیروگاههای سیکل دو مداره : 94
4_11_3 نیروگاههای با توربین تفکیک دورانی : 96
5_11_3 نیروگاههای سیکل ترکیبی : 97
12_3 بررسی اقتصادی انرژی زمین گرمایی برای تولید برق 98
1_12_3  هزینه سرمایه گذاری : 98
13_3 بررسی نیروگاه 100 مگاواتی زمین گرمایی مشکین شهر 99   
2_12_3 هزینه تعمیرات و نگهداری و بهره برداری : 99
1_13_3 بررسی اقتصادی نیروگاه زمین گرمایی مشکین شهر100
14_3 بررسی اثرات زیست محیطی استفاده از انرژی زمین گرمایی102
منابع 106

فصل اول: انرژی بیوماس

 1_1  مقدمه

یکی از مناسبترین منابع انرژی تجدید شونده انرژی بیوماس است.این انرژی علاوه بر خاصیت تجدیدپذیر بودن سازگار با محیط زیست است.منابع انرژهای بیوماس می توانند به انرژی الکتریسیته یا به صورت حاملهای از انرژی مانند سوختهای گازی یا مایع با توجه به نیاز بخشهای مختلف جامعه تبدیل شوند

منابع انرژی بیوماس به طور کلی به موادی از گیاهان و موجودات زنده بدست می آید اطلاق می شود. منابع انرژی بیوماس برخلاف سوختهای فسیلی رایج که به صورت     لایه های متمرکز در جهان یافت می شود بیشتر به صورت پراکنده هستند

و در نتیجه جمع آوری منابع انرژی بیوماس در حجمهای بالا قابل ملاحظه است . ازاینرو انرژی بیوماس به عنوان چهارمین منبع اصلی انرژی بشر و به عنوان بزرگترین انرژی تجدیدپذیر در جهان در تامین برق نزدیک به 14 در صد از برق و 18 در صد از کل انرژی اولیه جهان در سال 1998 مشارکت داشته است. این انرژی برای کشورهای در حال توسعه دارای اهمیت می باشد به خصوص اینکه انرژی بیوماس در این کشور ها قابل دسترس و هم قابل تهیه می باشد

ایران نیز که یک کشور درحال توسعه است فعالیتهایی در این زمینه انجام داده است. قدیمی ترین سابقه استفاده از انرژی بیوماس در ایران مربوط به تولید بیوگاز و تهیه سوخت متان جهت انرژی حرارتی مورد نیاز در حمام شیخ بهایی اصفهان می باشد

از فعالیتهایی که ایران در این زمینه انجام داده است میتوان به موارد زیر اشاره کرد

_نصب یک واحد راکتور بیوگاز در جزیره کیش به ظرفیت12/2مترمکعب توسط سازمان انرژی اتمی و  با همکارهای شرکت خدماتی کیش

_انجام مطالعات امکان سنجی جهت احداث نیروگاه بیوگاز ظرفیت 200کیلووات در شهر ساوه توسط سازمان انرژی اتمی

_نصب یک واحد راکتور بیوگاز در شهر ساوه به ظرفیت 24مترمکعب توسط سازمان انرژی اتمی

_نصب دستگاههای تولید بیوگاز در چند منطقه شمال کشور توسط وزارت جهاد کشاورزی

_بررسی امکان تولید برق با استفاده از زباله های شهر تهران توسط شهرداری و برق منطقه ای تهران

بخشی از منابع و مراجع پروژه پروژه دانشجویی مقاله تولید برق بدون مصرف سوخت فایل ورد (word)

منابع بیوماسی که برای  تولید انرژی مناسب هستند طیف وسیعی از مواد را شامل     می شوند . این مواد چوبهای سوختی جمع آوری شده از مزارع و درخستانهای طبیعی تا محصولات کشاورزی وجنگلی به خصوص آنهایی که برای تولید انرژی رشد داده شده اند و همچنین ضایعات شهری و ضایعات کشاورزی و فاضلابها را شامل می شوند

3_1  محصولات انرژی زا

 در سالیان اخیر زراعت محصولات انرژی زا توجه بسیاری را به خود جلب کرده است. یکی از نیروهای محرک اصلی پشتیبان این توجه بحرانی است که بسیاری از کشورهای صنعتی جهان به دلیل مازاد تولید خود در بخش کشاورزی با آن روبه رو شده اند. لغو حفاظت وحمایت از بخش کشاورزی موجب بلا استفاده گذراندن روز افزون مقدار متنابهی زمین در کشورهای صنعتی گردیده است. لذا اختصاص دادن بخشی از زمینهای کشاورزی به تولید انرژی لااقل برای تامین انرژی خود این بخش منطقی به نظر می رسد

از محصولات انرژی زا می توان به درختستانهای انرژی با دوره گردش کوتاه مانند کاشت درخت اوکالیپتوس و محصولات گیاهی مانند نیشکر وگیاهان حاوی روغن نباتی مانند سویا و بادام زمینی و گیاهان هیدروکربن اشاره کرد. لذا کاشت این محصولات می تواند یکی از راهکارهای بشر برای تامین انرژی آینده خود محسوب گردد

 1_3_1 ضایعات شهری وصنعتی

ضایعات شهری در برگیرنده انواع مختلفی از ضایعات نظیر مقوا وکاغذ و نخاله های ساختمانی زباله های منازل و فاضلابهای خانگی می گردند.یکی از مشکلات مشترک همه جوامع شهری صنعتی مساله دفن این مواد زاید از چرخه طبیعت می باشد

در کشور ایران طبق آمار سال 1378روزانه حدود 40هزار تن زباله با چگالی 350 کیلوگرم بر متر مکعب و سالانه حدود 4/6 ملیارد متر مکعب فاضلاب شهری صنعتی تولید می شود .بیش از 15 در صد از زباله های شهر ایران در تهران تولید می شود با توجه به ترکیب زباله ها و فاضلابهای کشور ,طرح یک مدریت جامع برای استفاده اقتصادی از آنها از طریق استحصال انرژی و با تولید کود و غیره در کشور کاملا ضروری می باشد

ارزش حرارتی زباله ها و فضولات خانگی به طور چشم گیری از منطقه ای به منطقه دیگر تفاوت می کند این مقدار در کشور آمریکا حدود 7تا 14 مگاژول بر کیلو گرم می باشد و در آلمان غربی 4/2تا 10مگاژول بر کیلو گرم است میانگین ارزش حرارتی شهر تهران در حدود 6/5 مگاژول بر کیلوگرم است. رطوبت بالای  زباله تهران که ناشی از وجود درصد بالای از مواد فساد پذیر در آن است که همین سبب پایین آمدن ارزش حرارتی زباله در شهر تهران گردیده است

2_3_1  ضایعات جامد شهری

ضایعات جامد شهری(MSW) عبارت از ضایعات جامدی است ,که از عملیات تجاری اداری خانگی و بعضی از صنایع به دست می آید. در حال حاضر حجم قابل توجهی از ضایعات عمدتا در زمین در دفن می شوند اما با مدیریت صحیح می توان بخش بسیاری از آن را به عنوان ماده اولیه در تولید سوخت و یا تولید کود مورد استفاده قرار داد و مقداری از آن را نیز بازیافت کرد و مورد مصرف مجدد قرار داد . گاز متان حاصل از محل دفن منابع  MSW می تواند برای تولید انرژی الکتریکی مورد استفاده قرار گیرد

 3_3_1  ضایعات مایع

فاضلاب ناشی از زیستگاه های انسانی دارای انرژی قابل ملاحظه ای می باشند و همانند   فضولات حیوانی می توانند به طور غیر هوازی تخمیر یافته و گاز متان تولید کنند. در گذشته بخش بسیاری از گاز تولید شده ناشی از تخمیر غیر هوازی فاضلاب جهت استفاده در ماشینهای توان ده و یا تامین انرژی برای روشنایی خیابانها مورد استفاده قرار می گرفت. با پیشرفت تکنولوژی از این گاز جهت تولید انرژی الکتریکی نیز استفاده    می گردد

4_3_1  فضولات دامی

یکی از منابعی که به عنوان منابع بیوماس محسوب می گردند فضولات دامی می باشند این منابع بخصوص در مناطق روستایی و نیز در مراکز دامپروری و دامداری یافت        می شوند و می توانند نقش مهمی در تامین انرژی و تولید کود ایفا کند

 4_1  تکنولوژیهای تبدیل انرژی بیوماس

تکنولوژیهایی که برای تبدیل و آزاد سازی انرژی بیوماس بکار برده می شوند ، از بخاریهای باز ساده که در جهان در حال توسعه برای پخت و پز مورد استفاده قرار       می گیرند ، تا واحد های پیرولیز پیشرفته تولید کننده سوختهای جامد ، مایع و گازی را شامل می شوند . تکنولوژیهای تبدیل بیوماس به سه دسته اساسی احتراق مستقیم ، بیوشیمیایی,ترمو شیمیایی تقسیم میشوند

5_1  فرآیند های احتراق مستقیم

احتراق مستقیم ، قدیمی ترین روشی است که بشر برای تبدیل ا نرژی شیمیایی نهفته در سوختهای فسیلی به انرژی گرمایی به کار گرفته است . این فرآیند در حال حاضر از اساسی ترین فرآیند ها برای تبدیل بیوماس به انرژی حرارتی محسوب می گردد و برای انواع سوختهای جامد شامل چوب و ضایعات چوبی ، بقایای کشاورزی و باغی ( کاه ، سبوس ، برگ خشک ، ترکه ها ، پوست ساقه درختان ) و ضایعات جامد شهری ( زباله های شهری ) قابل استفاده می باشد . گرمای تولید شده در این فرآیند می تواند برای تولید برق و یا تامین حرارت مورد نیاز مصارفی نظیر فرآیندهای صنعتی ، گرمایش فضا ، پخت و پز و یا گرمایش نواحی مختلف شهری مورد استفاده قرار گیرد . وجود رطوبت نسبتا بالا در بسیاری از منابع بیوماس و نیز تنوع ترکیبات آنها ، باعث گران بودن تکنولوژیهای احتراق مستقیم گردیده است و استفاده از آنها را بدلیل اقتصادی با مشکلاتی مواجه ساخته است . با توجه به آنکه کوره ها و بویلرهای مصرف کننده سوخت جامد از سالها پیش برای بکار بردن زغال سنگ طراحی و ساخته شده اند و روند توسعه و بهبود را پیوسته طی نموده اند ، با کمی تغییر و یا حتی بدون تغییر می توان همین تاسیسات را برای تغذیه با زغال چوب ، هیزم و بقایای کشاورزی و جنگلی به کارگرفت . به موازات این تاسیسات ، در سالیان اخیر کوره هایی نیز برای سوزاندن زباله های شهری ساخته شده اند ، که قابلیت مصرف سوختهای مخلوط مانند زباله و لجن فاضلاب ، زباله و چوب یا زباله و زغال را دارا می باشند . سیستمهای احتراق مستقیم بطور کلی مجهز به کوره بستر ثابت و یا کوره های بستر سیال می باشند

 6_1  سیستمهای احتراق زیست توده سوز با کوره های بستر ثابت

در کوره های بستر ثابت ، مواد زیست توده بدون حرکت نسبت به بستر خود ، بر روی یک آتشخوان ساکن و یا متحرک ، سوزانده می شوند . آتشخوان از اساسی ترین اجزای کوره های احتراق محسوب می گردد و وظیفه انتقال زیست توده به داخل محفظه احتراق ، مخلوط کردن و تزریق هوای احتراق بر عهده آن می باشد . در این نوع کوره ها، بیوماس بدون پردازش و یا با حداقل پردازش وارد مخزن ذخیره می شوند و از آنجا با جرثقیل یا دستگاههای نقاله به کوره منتقل می گردند

در برخی از سیستمهای احتراق مستقیم برای جلوگیری از آلودگی هوا مواد زیست توده را بصورت پردازش شده، مورد استفاده قرار می دهند . متداولترین سوخت مصرفی در این نوع کوره ها ، سوخت مشتق از زباله   ( RDF ) می باشد . سوخت معمولاً بر روی یک آتشخوان متحرک که دارای سطح همواری است ، سوزانده می شود و هوا از زیر سطح آن، به محل احتراق وارد می شود و احتراق را یکنواخت و اختلاط هوا و سوخت را بهینه می کند . در قسمت بالایی بدنه محفظه احتراق نیز معمولا، دریچه هایی برای ورود هوای اضافی تعبیه می شوند . استفاده از سوختهای مشتق از زباله میتواند بصورت منفرد یا آمیخته با سایر سوختهای جامد ما نند چوب یا زغال سنگ در این کوره ها انجام پذیرد . استفاده از سوختهای مشتق از زباله دارای مزایایی به شرح زیر می باشد

  یکنواخت بودن خواص سوخت ، راهبری و تنظیم شرایط عملکرد کوره را راحتتر و برنامه ریزی برای استفاده از انرژیی احتراق را آسانتر می نماید

  در فرآیند تهیه سوخت مشتق از زباله RDF ، فلزات نامناسب وخطرناک از آن جدا میشوند و بدین ترتیب بخش بزرگی از انتشار آلاینده های زیانبار به هوا حذف می گردد

برای تهیه سوخت مشتق از زباله ، هزینه نسبتا بالایی صرف می گردد ، که تا حدود بسیاری بر هزینه استفاده از این تکنولوژی می افزاید . سوختهای مشتق از زباله         می توانند بصورت خرده شده و یا قطعات فشرده شده تولید شوند و به مصرف کوره های زباله سوز برسند

 7_1   کوره های احتراق بستر سیال ( FBC )

در کوره های احتراق بستر سیال ، با پر نمودن بخشی از کوره با مواد دانه ای شکل ، مانند سیلیس و یا  ماسه های مقاوم ، بستر احتراق بوجود می آید . با دمیده شدن پیوسته جریان هوا یا اکسیژن با سرعت مناسب از زیر این بستر ، درمواد دانه ای شکل    ( ذرات ) آشفتگی بوجود می آید و در نهایت بدون اینکه از محیط بگریزند ، در مسیر جریان هوا ( اکسیژن ) به حالت شناور در می آیند . به چنین وضعیتی حالت سیال گفته   می شود . ذرات بستر سپس به کمک یک مشعل کمکی گرم می شوند ، پس از رسیدن ذرات بستر به دمای مناسب ، سوخت با جریان پیوسته به درون کوره ریخته می شود و با برخورد به سیال داغ ، می سوزد و گرما آزاد می کند . پس از این مرحله ، مشعل کمکی از مدار خارج میگردد ، زیرا اختلاط یکنواخت و پیوسته سوخت و ذرات بستر ، امکان احتراق کامل با دمای تنظیم شده و گرمای یکنواخت را از این مرحله به بعد ، فراهم     می نماید . خاکستری که دراین شرایط تولید می شود ، درون بستر و در فضای بین ذرات باقی می ماند و دردوره های زمانی مشخص با خاموش کردن کوره ، خاکستر اضافه تخلیه می گردد ، تا حجم بستر از میزان مناسب تجاوز نکند . در این تکنولوژی ، معمولا با قراردادن لوله های آب در درون بستر ، گرمای ایجاد شده را به آن انتقال می دهند . فرآیند احتراق بستر سیال برای سوزاندن زغال سنگ کاربرد زیادی دارد ، اما می توان آنرا برای انواع سوختهای زیست توده مانند زغال چوب ، ضایعات کشاورزی ، خاک اره و زباله مورد استفاده قرار داد

کوره های احتراق بستر سیال بطور کلی به دو نوع کوره های فشار عادی و کوره های تحت فشار تقسیم می گردند . کوره های فشار عادی در نیروگاههای برق بعنوان مولد بخار ( بویلر ) توسعه بسیاری یافته اند و هم اکنون نیروگاههایی با قدرت 160 تا 350 مگاوات با استفاده ازاین کوره ها درحال کار می با شند . امتیاز بزرگ این کوره ها ، سازگاری و انعطاف پذیری آنها نسبت به انواع سوختها و حتی سوختهای نامرغوب است . تا اوایل دهه 1990 میلادی اغلب این واحدها از زغال سنگ استفاده می نمودند . اما اکنون انواع زیست توده جامد بعنوان سوخت در این کوره ها مصرف می شوند . بازیافت انرژی در این فن آوری از راه تبدیل گرمای احتراق به بخار صورت می گیرد . تولید بخار به کمک لوله هایی که در محل بستر احتراق و گاهی در مسیر گازهای داغ خروجی از کوره قرار داده می شوند ، انجام می گیرد . بخار تولید شده می تواند وارد یک توربین بخار شده و برق تولید کند و یا برای اهداف صنعتی مورد استفاده قرار گیرد . کوره های بستر سیال تحت فشار قابلیت کاربرد درنیروگاههای برق با بازدهی نسبتا بالا را دارا     می باشند . حجم و ابعاد این نوع کوره ها نسبت به نوع فشار عادی بسیار کمتر می باشد و ایجاد آلایندگی کمتری درمحیط زیست می نمایند . فشار درون محفظه احتراق این سیستم بین 8/5 تا 5/19 اتمسفرمی باشد

8_1  فرآیندهای ترمو شیمیایی

در فرآیندهای ترمو شیمیایی ، بیوماس با دریافت گرما به محصولات بسیار با ارزشی ، که معمولا از نوع یک مخلوط گازی ، یک مایع نفت ما نند ، و یا چیزی شبیه زغال کربنی خالص می باشند ،تبدیل می گردد . توزیع این محصولات بستگی به میزان و حجم بیوماس ، دما و فشار واکنش ، مدت زمان حضور در محل احتراق و ارزش گرمایی بیوماس دارد . در فرآیندهای ترمو شیمیایی دما بالا ( بیشتراز 1000 درجه سانتیگراد ) ، بیوماس به گاز تبدیل می گردد و در فرآیندهای دما پایین ( کمتر از 400درجه سانتیگراد ) به عنوان مثال زغال چوب تولید می گردد . با استفاده از روشهایی، میتوان ازبیوماس تولید سوختهای مایع و یا مواد شیمیایی دیگر نیز نمود . فن آوری ترموشیمیایی در صورتیکه نوع فرآیند متناسب با نوع ماده خام و نوع محصول مورد نظر انتخاب شود وشرایط عملیاتی با دقت کافی تنظیم شوند ، دارای عملکرد خوبی می باشد . درکشورهای اروپایی تولید سوختهای مایع برای کاربرد درصنعت ترابری و موتورهای احتراق داخلی از اهمیت بالایی برخوردار می باشد ، درحالیکه در برخی از کشورها نظیر برزیل تولید زغال برای کاربرد درصنایع ذوب فلزات و سرامیک دارای اهمیت است . برخی ازکشورها ما نند کانادا بر روی بازیافت سوخت مایع و نیز تولید سوخت گازی تلاشهای فراوانی نموده اند . براساس تجربیات حاصله ، فن آوری تولید . زغال و تولید گاز مصنوعی با ارزش حرارتی پائین ، دارای کمترین پیچیدگی می باشند . تولید سوختهای مایع نیازمند تجهیزات و ملحقات بیشتری است و به دقت بیشتری نیاز دارد . چوب و زائدات جنگلی مناسب ترین مواد خام برای فن آوری ترموشیمیایی محسوب می گردند . پس از آنها زائدات کشاورزی لینگوسلولزی در رده بعدی ارزشی جای دارند . زباله های شهری بدلیل ناهمگونی در ترکیب خود ، عملکردی چندان خوبی در این فن آوری نشان     نداده اند ، چنانکه درآمریکا تنها یک واحد آتشکافت زباله تا سال 1992 مشغول به کار بوده است

1_8_1  تولید سوختهای جامد     

از قرنها پیش عمل کربنیزه کردن چوب ، جهت تولید زغال چوب صورت می گرفته است. با کربنیزه کردن چوب ، انرژی بیشتری در واحد جرم بدست می آید و حمل و نقل آن بسیار اقتصادی می شود زغال چوب محصول بدون دودی است که برای مصرف در محیطهای خانگی مناسب می باشد . در بخش صنعت ، زغال چوب در بخشهایی که مشخصات ویژه ای از سوخت ، نظیر کربن بالا و گوگرد کم لازم است ، مصرف می شود .  در فرآیند داخل کوره های ساخت زغال چوب ، قسمتی از چوب سوزانده می شود تا درجه حرارت مورد نیاز برای عمل آتشکافت ( پیرولیز ) فراهم گردد . زمانیکه درجه حرارت به حدود 280 درجه سانتیگراد میرسد ، فرآیند گرمازا شده و ارسال هوا و اکسیژن به کوره قطع می شود . ساده ترین کوره هایی که در بسیاری از مناطق جهان در حال توسعه بکار برده می شوند ، از تلی از چوب که با خاک در داخل گودالهایی پوشیده شده اند ، تشکیل یافته اند . دراین کوره ها فرآیند کربنیزه کردن بسیار کند صورت     می پذیرد و کیفیت زغال چوب تولید شده  نامرغوب می باشد .             

2_8_1  تولید سوختهای مایع

مایع سازی عبارت ازیک تبدیل ترمو شیمیایی است ، که در طی آن یک محصول مایع گونه ، از نقطه نظر فیزیکی و شیمیایی بسیار پایدار ، بدست می آید

آتشکافت سریع چوب در راکتور بستر سیال : آتشکافت سریع که فرآیند دمای متوسط  ( درحدود 500 درجه سانتیگراد ) می با شد ، که در طی آن چوب بطور بیهوازی ، با سرعت بالا داغ  می گردد . محصولات آتشکافت پس از سرد شدن بصورت روغن قابل استخراج می باشند . در این فرآیند چوبهای جنگلی پس از خشک شدن ، خرد ، آسیاب و غربال می شوند و با ابعادی بین 2 تا 5 میلیمتر وارد راکتور بسترسیال  می گردند . بستر راکتور از ماسه پوشیده شده است و عامل سیال کننده آن ، گاز برگشتی از خود فرآیند  می باشد ، که دمای آن بوسیله پیش گرمکن ها قبل از ورود به راکتور تا حد لازم افزایش یافته است . سرعت دمیدن گاز به داخل راکتور ، به نحوی تنظیم میگردد ، که ذرات زغال از راکتور به بیرون پرتاب می شوند ولی ذرات ماسه در آن باقی می مانند . دریک سیکلون ذرات زغال از جریان گاز خروجی جدا می شوند . جداسازی و بازیافت مایعات از گاز در دو چگالنده گرم و سرد انجام می گیرد . گاز خروجی در یک صافی       ( الکتروفیلتر ) تمیز شده و بوسیله یک کمپرسور به مدار فرآیند باز میگردد . میزان جرم روغن تولیدی در این فرآیند درحدود 75 درصد ، میزان جرم زغال تولیدی در حدود 10 درصد و میزان جرم گاز تولیدی در حدود 15 درصد جرم چوب خشک ورودی به پروسه می باشند . گاز و زغال تولیدی ، می توانند برای تامین انرژی حرارتی پروسه مورد استفاده قرار گیرند

هیدرو پیرولیز ( آتشکافت با بخار آب داغ ) : دراین فرآیند با دمیدن بخار داغ به راکتور ، از چوب روغنهای سوختنی تولید می گردد . دمای این فرآیند بین 300 تا 400 درجه سانتیگراد و فشار درون راکتور درحدود 25 مگاپاسکال می باشد . در این فرآیند ،    تراشه های چوب خشک شده با رطوبت بین 5 تا 8 درصد و در اندازه های بین 5/0 تا 5/1 سا نتیمتر وارد راکتور می گردند . ارزش گرمایی روغن تولید شده در این فرآیند در حدود  23 مگاژول بر کیلوگرم گزارش شده است و جرم آن نیز تا حدود 50% وزن   تراشه های چوب اندازه گیری شده است. گازی کردن فرآیند زیست توده یک فرآیند تجزیه به کمک گرما می باشد ، که در دمای بالا و در حضور سیالی در درون محیط فرآیند موسوم به عامل گازساز ، صورت می پذیرد . در خلال جنگ جهانی دوم، سیستمهای تولید گاز ازچوب و زغال چوب در سراسر جهان متداول شده و گاز تولیدی توسط آنها بعنوان سوخت در وسایل نقلیه گاز سوز مورد استفاده قرار گرفتند . بحران انرژی در دهه 1970 مجددا علاقه به  سیستم های گازی بیوماسی را برانگیخت . تا سال 1980 بیش از 15 کارخانه سازنده در جهان ، تاسیسات تولید گاز از چوب و زغال چوب را با ظرفیتهایی تا 250 کیلو وات عرضه کردند . در سالهای بعد ، در فیلیپین برنامه هایی وسیع برای ساخت و فروش گازی کنندهای کوچک برای حرکت موتورها ، اجرا گردید . در برزیل ، پیش از 30 سازنده ، تجهیزاتی با طرحهای مختلف و در اندازه های گوناگون عرضه کردند . وسایل تولید کننده گاز ازچوب با ظرفیتهایی تا 3 مگاوات ( حرارتی ) درمناطق دور افتاده جهت تولید گاز برای پمپهای موتوری آبیاری بکار گرفته شدند . درحال حاضر انواع روشهای گازی سازی در جهان ابداع شده اند ، بعضی از این روشها که درگذشته مختص گازی سازی زغال سنگ بوده اند ، جهت گازی سازی بیوماس نیز سازگار شدند . در فن آوری های گازی کردن زیست توده ، با توجه به شرایط فرآیند ، امکان تولید انواع گاز مصنوعی با ترکیبات و ارزش گرمایی های مختلف امکانپذیر   می باشد

3_8_1  انواع راکتورهای گازی کننده براساس نوع راکتور

 

برای دریافت پروژه اینجا کلیک کنید
» نظر